Brilliant Italian scientists successfully recombine work and pleasure

A study provides evidence that talking into a person’s right ear can affect behavior more effectively than talking into the left.

One of the best known asymmetries in humans is the right ear dominance for listening to verbal stimuli, which is believed to reflect the brain’s left hemisphere superiority for processing verbal information.

I heavily prefer my left ear for phone calls. So much so that I have trouble understanding people on the phone when I use my right ear. Should I be concerned that my brain seems to be inverted?

Read on and it becomes clear that going beyond perceptual psychology, the scientists are terrifically shrewd:

Tommasi and Marzoli’s three studies specifically observed ear preference during social interactions in noisy night club environments. In the first study, 286 clubbers were observed while they were talking, with loud music in the background. In total, 72 percent of interactions occurred on the right side of the listener. These results are consistent with the right ear preference found in both laboratory studies and questionnaires and they demonstrate that the side bias is spontaneously displayed outside the laboratory.

In the second study, the researchers approached 160 clubbers and mumbled an inaudible, meaningless utterance and waited for the subjects to turn their head and offer either their left of their right ear. They then asked them for a cigarette. Overall, 58 percent offered their right ear for listening and 42 percent their left. Only women showed a consistent right-ear preference. In this study, there was no link between the number of cigarettes obtained and the ear receiving the request.

In the third study, the researchers intentionally addressed 176 clubbers in either their right or their left ear when asking for a cigarette. They obtained significantly more cigarettes when they spoke to the clubbers’ right ear compared with their left.

I’m picturing the scientists using their grant money to pay cover at dance clubs and try to obtain as many cigarettes as possible – carefully collecting, then smoking, their data – with the added bonus that their experiment happens to require striking up conversation with clubbers of the opposite sex who are dancing alone. One assumes that, if the test subject happened to be attractive, once the cigarette was obtained (or not) the subject was invited out onto the terrace so the scientist could explain the experiment and his interesting line of work. Well played!

How touchscreen buttons "should" feel

Researchers at the University of Tampere in Finland found that,

Interfaces that vibrate soon after we click a virtual button (on the order of tens of milliseconds) and whose vibrations have short durations are preferred. This combination simulates a button with a “light touch” – one that depresses right after we touch it and offers little resistance.

Users also liked virtual buttons that vibrated after a longer delay and then for a longer subsequent duration. These buttons behaved like ones that require more force to depress.

This is very interesting. When we think of multimodal feedback needing to make cognitive sense, synchronization first comes to mind. But there are many more synesthesias in our experience that can only be uncovered through careful reflection. To make an interface feel real, we must first examine reality.

“We’re suggesting that the ear evolved out of the skin in order to do more finely tuned frequency analysis."

Recent research reveals some fun facts about aural-tactile synesthesia:

Both hearing and touch, the scientists pointed out, rely on nerves set atwitter by vibration. A cell phone set to vibrate can be sensed by the skin of the hand, and the phone’s ring tone generates sound waves — vibrations of air — that move the eardrum…

A vibration that has a higher or lower frequency than a sound… tends to skew pitch perception up or down. Sounds can also bias whether a vibration is perceived.

The ability of skin and ears to confuse each other also extends to volume… A car radio may sound louder to a driver than his passengers because of the shaking of the steering wheel. “As you make a vibration more intense, what people hear seems louder,” says Yau. Sound, on the other hand, doesn’t seem to change how intense vibrations feel.

Touch affects cognition

In a mock haggling scenario, those sat on soft chairs were more flexible in agreeing a price. The team also found candidates whose CVs were held on a heavy clipboard were seen as better qualified than those whose CVs were on a light one….Overall, through a series of experiments, they found that weight, texture, and hardness of inanimate objects unconsciously influence judgments about unrelated events and situations. It suggests that physical touch, which is the first of sense to develop, may be a scaffold upon which people build social judgments and decisions.

Hand amputees have distorted vision

The space immediately surrounding the hands, where objects are grasped, touched, and manipulated, is called “action space” by psychologists. It is distinct from the wider spatial field because there is evidence that visual perception of an object is affected by the object’s proximity to the hands—i.e., its ability to be touched.

A new study has shown that hand amputees have distorted visual perception in the action space:

The space within reach of our hands—where actions such as grasping and touching occur—is known as the “action space.” Research has shown that visual information in this area is organized in hand-centered coordinates—in other words, the representation of objects in the human brain depends on their physical location with respect to the hand. According to new research in Psychological Science amputation of the hand results in distorted visuospatial perception (i.e., figuring out where in space objects are located) of the action space….

Volunteers were instructed to look at a central cross on a screen as two white squares were briefly shown to the left and right side of the cross. The volunteers had to indicate which of the squares was further away from the cross. The results reveal that hand amputations affect visuospatial perception. When the right square was slightly further away from the center, participants with right-hand amputations tended to perceive it as being at the same distance from the center as the left square; this suggests that these volunteers underestimated the distance of the right square relative to the left. Conversely, when the left square was further away, participants with left-hand amputations perceived both squares as being equally far away from the center—these participants underestimated the left side of near space. Interestingly, when the volunteers were seated farther away from the screen, they were more accurate in judging the distances, indicating that hand amputations may only affect perception of the space close to the body.

The findings suggest that losing a hand may shrink the action space on the amputated side, leading to permanent distortions in spatial perception. According to the researchers, “This shows that the possibility for action in near space shapes our perception—the space near our hands is really special, and our ability to move in that space affects how we perceive it.

Perceptual chauvinism

I read two articles in a row today that use unnecessary quotation marks, which expose that strange discomfort with writing about touch I have written about before. As humans we hold our feelings dear, so we don’t like to say that any other beings can feel. Especially plants, for chrissake:

Plants are incredibly temperature sensitive and can perceive changes of as little as one degree Celsius. Now, a report shows how they not only “feel” the temperature rise, but also coordinate an appropriate response—activating hundreds of genes and deactivating others; it turns out it’s all about the way that their DNA is packaged.

The author can’t simply say that plants can feel, so instead he writes “feel,” indicating a figurative sense of the word. Why? Because the word ‘feel’ implies some amount of consciousness. (In fact I have argued that ‘feeling’ signifies a baseline for the existence of a subject.) Only the animal kingdom gets feeling privileges.

And then, in another article posted on Science Daily, we have a similar example, but this one is even more baffling. The context is that research has shown that playing Mozart to premature infants can have measurable positive effects on development:

A new study… has found that pre-term infants exposed to thirty minutes of Mozart’s music in one session, once per day expend less energy—and therefore need fewer calories to grow rapidly—than when they are not “listening” to the music

In the study, Dr. Mandel and Dr. Lubetzky and their team measured the physiological effects of music by Mozart played to pre-term newborns for 30 minutes. After the music was played, the researchers measured infants’ energy expenditure again, and compared it to the amount of energy expended when the baby was at rest. After “hearing” the music, the infant expended less energy, a process that can lead to faster weight gain.

Not allowing plants to feel is one thing. And I can even understand the discomfort with writing that newborns are listening to music, because that may imply they are attending to it, which is questionable. But why can’t human babies be said to hear music? This is the strangest case of perceptual chauvinism I have yet come across.

Fingerprint ridge width is coupled to Pacinian resonance

French scientist Georges Debregeas has published a finding that the width of the ridges of our fingerprints just happens to be optimized for maximally vibrating our nerve endings:

The latest evidence suggests that fingerprints process vibrations in the skin to make them easier for nerves to pick up. They may seem little more than digital decoration, but biomechanics have long known that fingerprints have at least one use: they increase friction, thereby improving grip…

In fact the role that fingerprints play in touch is far more important and subtle than anyone imagined.

…Biologists have known for some time that Pacinian corpuscles are most sensitive to vibrations at 250Hz. So how do fingers generate this kind vibration? Biologists have always assumed that humans can control the frequency of vibrations in the skin by changing the speed at which a finger moves across a surface. But there’s little evidence that people actually do this and the Paris team’s discovery should make this view obsolete.

…They say that fingerprints resonate at certain frequencies and so tend to filter mechanical vibrations. It turns out that their resonant frequency is around 250 Hz. What an astonishing coincidence!

That means that fingerprints act like signal processors, conditioning the mechanical vibrations so that the Pacinian corpuscles can best interpret them…

The article also notes that in robotics this is called morphological computation; that is, computation through interactions of physical form.